Mark Scheme (Results)

Summer 2022
Pearson Edexcel International Advanced Level In Decision Mathematics (WDM11) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log number P72458A
Publications Code WDM11_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.
M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
'A' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{\text { will be used for correct } \mathrm{ft}}$
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft , but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme										Marks	
1.(a)	$\frac{1150}{300}=3.83 \ldots$ so lower bound is 4										M1 A1	(2)
	175	135	210	105	100	150	60	20	70	125	M1	
	175	210	135	105	150	100	60	70	125	20	A1	
	210	175	135	150	105	100	70	125	60	20		
(b)	210	175	150	135	105	100	125	70	60	20	A1ft	
	210	175	150	135	105	125	100	70	60	20		
	210	175	150	135	125	105	100	70	60	20		
	210	175	150	135	125	105	100	70	60	20	A1cso	(4)
(c)	Truck 1: $\mathbf{2 1 0}$ $\underline{70}$ 20 Truck 2: $\mathbf{1 7 5}$ $\underline{125}$ Truck 3: $\mathbf{1 5 0}$ $\underline{\mathbf{1 3 5}}$ Truck 4: $\underline{105}$ $\underline{100}$ 60										M1 A1 A1 (3)	
											9 mark	

a1M1: Attempt to find the lower bound $(1150 \pm 210) / 300$ (a value of 3.83 (or better) seen with no working can imply this mark)
a1A1: Correct calculation seen or 3.83 (or better) followed by a lower bound of 4 . An answer of 4 with no working scores M0A0. Only seeing 3.8 followed by 4 scores M1A0
b1M1: Bubble sort. Consistent direction, end number (20) in place and the list beginning with the correct first five numbers (175 210135105150). Do check these carefully as some candidates show the result of each comparison and swap in their first pass. Consider the placement of the candidate's numbers, rather than what the candidate labels each line of their pass. For example, assume that the first time that the 20 appears at the end of the list is the end of their first pass
b1A1: The first, second and third passes correct - so end three numbers in place
b2A1ft: Fourth and fifth passes correct following through from the candidate's third pass - so end five numbers in place
b3A1: cso (correct solution only - so previous three marks must have been awarded in this part). Must show a $6^{\text {th }}$ pass showing no swaps/changes (give bod if the passes are not labelled but do not award this mark if it is clear that after the $5^{\text {th }}$ pass the list is simply being written out again (rather than a genuine $6^{\text {th }}$ pass taking place)). Condone if the sort continues until a $9^{\text {th }}$ pass has been completed (but there should be no changes in the $9^{\text {th }}$ pass)

SC in (b) if list is sorted into ascending order (regardless of reversing at the end of the sort) award M1 for 135175105100150602070125210 and then
A1 for 135105100150602070125175210 and 105100135602070125135175210 so 2 marks max.
c1M1: Their first four items placed correctly and at least eight values placed in trucks (if correct this will be the bold items but must check their packing if any of their first four values are incorrect - note that the maximum weight is 300). Condone cumulative totals for M1 only. First-fit increasing scores no marks in this part. If no sort seen in (b) then mark (c) assuming the correct ordered list in descending order c1A1: First eight items placed correctly (the underlined and bold values). No additional or repeated values. No follow through or misreads for the A marks in this part. Must be using the correct ten values (so any wrong values regardless of where they appear in the trucks is A0)
c2A1: cso. No additional or repeated values

2.(a)	$\begin{align*} & x=10 \\ & y=7 \text { from } 9-0-5=2(22-13-y)(\mathrm{oe}) \tag{2} \end{align*}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$
(b)		M1 M1 A1 (3)
(c)	Lower bound is 4 workers e.g. activities H, D, F and G together with 11 < time < 12	M1 A1 A1 A1 depM1 A1 (6)
		11 marks
Notes for Question 2		

a1B1: cao for x (ignore working for this mark)
a2B1: cao with sufficient working as Answer Given - as a minimum accept $4=2(9-y)$ (oe) but just $4=18$ $-2 y$ is B 0
b1M1: All top boxes complete, values generally increasing in the direction of the arrows (so generally going from 'left to right' across the network), condone one 'rogue' value (if values do not increase in the direction of the arrows then if one value is ignored and the remaining values do increase in the direction of the arrows then this is considered to be a single rogue value). Note that all values in the top boxes could be incorrect but it can still score the M mark if the values are increasing in the way stated above
b2M1: All bottom boxes complete. Values generally decreasing in the opposite direction of the arrows (so generally going from 'right to left' across the network), condone one 'rogue' (as described above in b1M1) b1A1: cao - all values correct
c1M1: At least ten different activities labelled including at least seven floats. A scheduling diagram (so a diagram in which no floats are evident) scores M0
c1A1: The critical activities dealt with correctly and appearing just once (C, H and N) and three non-critical activities dealt with correctly (both duration and total float correct)
c2A1: Any six non-critical activities correct (this mark is not dependent on the previous A mark)
c3A1: cso - completely correct Gantt chart (exactly fourteen activities appearing just once)
c2dM1: Dependent on first M mark in this part. Either a statement with the correct number of workers (4) and stating the correct activities (H, D, F and G) with any numerical time stated or the correct number of workers (4) and a time in the interval $11, t,, 12$ - mark the numerical value only not their use of the words 'day/time' (or equivalent)
c4A1: A completely correct statement with details of both time and activities. Candidates must give a time within the correct interval of $11<t<12$, e.g. 11.5 (or 'on/during day 12 ') and state the correct activities (H, D, F and G).
Please note the strict inequalities for the time interval (e.g. implying a time of 11 is incorrect). Answers given as an interval of time are acceptable provided the time interval stated is correct for all its possible values (e.g. time 11-12 or 'between 11 and 12 ' is A0). A completely correct statement with an additional incorrect statement scores A0 (so do not ignore subsequent working)

For (c) the following may be useful in checking their cascade chart provided the float is shown after the corresponding activity:

Activity	Duration + Float
A	0 to 4 F: 4 to 7
B	0 to 5 F: 5 to 9
C	0 to 7 Critical
D	4 to 12 F: 12 to 15
E	4 to 5 F: 5 to 9

\(\left.$$
\begin{array}{|c|c|}\hline \text { Activity } & \begin{array}{c}\text { Duration }+ \\
\text { Float }\end{array} \\
\hline \text { F } & \begin{array}{c}7 \text { to } 13 \\
\text { F: } 13 \text { to } 15\end{array} \\
\hline \text { G } & \begin{array}{c}7 \text { to } 13 \\
\text { F: } 13 \text { to } 17\end{array} \\
\hline \text { H } & \begin{array}{c}7 \text { to } 16 \\
\text { Critical }\end{array}
$$

\hline I \& 13 to 20

F: 20 to 22\end{array}\right]\)| 13 to 15 |
| :---: |
| F: 15 to 17 |

Activity	Duration + Float
K	16 to 21 $\mathrm{~F}: 21$ to 22
L	21 to 25 $\mathrm{~F}: 25$ to 26
M	16 to 19
	$\mathrm{~F}: 19$ to 26
N	16 to 26 Critical

3.(a)	Kruskal: $\mathrm{AB}(6), \mathrm{BP}(10), \mathrm{CW}(11), \mathrm{CP}(12), \mathrm{HM}(14), \mathrm{AH}(15)$, reject $\mathrm{CH}(17)$, reject $\mathrm{AC}(18)$, reject $\mathrm{AP}(20)$, reject $\mathrm{MW}(21), \mathrm{LY}(21), \mathrm{AS}(26), \mathrm{LS}(28)$ (not BS , LM, HL, SY, AL)	M1 A1 A1 (3)
(b)	Prim: AB, BP, CP, CW, AH, HM, AS, LS, LY	M1 A1 A1 (3)
(c)	143 (miles)	B1 (1)
(d)	286 (miles)	B1ft (1)
(e)	NNA starting at W : $\mathrm{W}-\mathrm{C}-\mathrm{P}-\mathrm{B}-\mathrm{A}-\mathrm{H}-\mathrm{M}-\mathrm{L}-\mathrm{Y}-\mathrm{S}-\mathrm{W}$ $11+12+10+6+15+14+40+21+48+55=232$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
(f)	The best upper bound is the one starting at Y as 212 is less than both 232 and 286	B1 (1)
(g)	$(143-11)+11+21=164$ (miles)	M1 A1 (2)
(h)	WCPBAHMLYSACW	B1 (1)
		14 marks

Notes for Question 3

a1M1: First four arcs ($\mathrm{AB}, \mathrm{BP}, \mathrm{CW}, \mathrm{CP}$) correctly chosen and at least one rejection seen at some point
a1A1: All arcs in tree selected correctly and in the correct order (AB, BP, CW, CP, HM, AH, LY, AS, LS) - no other arcs in MST
a2A1: cso including all rejections correct and at the correct time - note that LY can be accepted before MW is rejected. We do not need to see the explicit rejection of arcs BS to AL but if these are explicitly rejected then they must be in the correct order. Note that a list of all the arcs in the correct order followed by a list of the arcs in the MST can score full marks
b1M1: First three arcs correctly chosen in order ($\mathrm{AB}, \mathrm{BP}, \mathrm{CP}, \ldots$) or first four nodes $\{\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{C}, \ldots\}$ correctly chosen in order. If any explicit rejections seen at some point then M1 (max) only. Order of nodes may be seen at the top of a matrix/table $\{1,2,4,-,-,-, 3,-,-,-\}$ so do check carefully for this. Starting at any other node can score M1 only for first three arcs chosen correctly
b1A1: First six arcs correctly chosen in order (AB, BP, CP, CW, AH, HM,...) or all ten nodes $\{\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{C}$, W, H, M, S, L, Y \} correctly chosen in order. Order of nodes may be seen at the top of a matrix so for the first two marks accept $\{1,2,4,6,9,7,3,8,5,10\}$ (no missing numbers)
b2A1: cso - all arcs correctly stated and chosen in the correct order (with no additional arcs). They must be considering arcs for this final mark (do not accept a list of nodes or numbers across the top of the matrix unless the correct list of arcs (in the correct order) is also seen)
c1B1: cao (143) - this mark can be awarded if seen in (b) (although if answered in (c) too then mark according to the answer given in (c))
d1B1ft: Follow through double their answer from (c)
e1M1: Nearest neighbour route starting at $\mathrm{W}-$ must have at least $\mathrm{W}-\mathrm{C}-\mathrm{P}-\mathrm{B}-\mathrm{A}-\mathrm{H}-\ldots$ allow if stated in terms of arcs
e1A1: CAO on length (232) and route (must return to W and can be stated in terms of arcs)
f1B1: An indication that 212 is the minimum (of 212 and the answers to (d) and (e)) - this mark is dependent on the correct values in (d) and (e) so accept an answer of the form 'the one starting at Y (or the route with weight 212) as it is the least' - we do not need to see explicit mention of the values in (d) and (e) provided they are correct in (d) and (e)
g1M1: (weight of their MST from (c) or (b) or 132 only) $-11+11$ (WC) +21 (MW) (oe so may not see the $-11+11$). A correct answer of 164 can imply this (and the next) mark
g1A1: 164
h1B1: cao - either the route must be written out in full (in terms of nodes or arcs) or they must make it absolutely clear that the route begins exactly as in (e) (which must therefore be correct) but after S, towns A and C are visited before (returning to) W . Just stating that A, C, W are visited twice (or similar) is B0

5. (a)
(b)(i)
(b)(ii)
C, F, I and J
(b)(iii)
Total float for G is 3 (hours)
Total float for K is 1 (hour)

Ignore incorrect or lack of arrows on the activities for the first four marks only
a1M1: At least eight activities (labelled on arc), one start and at least two dummies placed
a1A1: Activities A, B, C and two of activities D, E, F or G dealt with correctly (so at least one dummy (+ correct arrow) required)
a2A1: Activities D, E, F and G dealt with correctly - so first two dummies (+ correct arrows) are required for this mark
a3A1: Activities H and I dealt with correctly (so must have the final two dummies + correct arrows)
a4A1: cso - activities J and K dealt with corrctly. All arrows correctly placed for each activity with one finish and at most four dummies. Note that some candidates are drawing the graph non-planar which is fine

Please check all arcs carefully for arrows - if there are no arrows on any dummies then M1 only. Note that additional (but unnecessary) 'correct' dummies that still maintain precedence for the network should only be penalised with the final A mark if earned
bi1B1: cao (24)
bii1B1: cao (C, F, I and J with no others)
biii1B1: cao (total float for G as 3)
biii2B1: cao (total float for K as 1)
Useful for checking (a):

Activity	A	B	C	D	E	F	G	H	I	J	K
IPA	-	-	-	A, B	A, B	B, C	B, C	D	D, E, F, G	H, I	D, E, F

a1M1: A larger value replaced by a smaller value at least twice in the working values at either $\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}$, G, H
a1A1: All values at D, C and B correct and the working values in the correct order
a2A1: All values at F and E correct and the working values in the correct order
a3A1ft: All values in G and H correct on the follow through and the working values in the correct order. To follow through G check that the working values at G follow from the candidate's final values for the nodes that are directly attached to G (which are C and B). For example, if correct then the order of labelling of nodes C and B are 3 and 4 respectively so the working values at G should come from C and B in that order. The first working value at G should be their 23 (the Final value at C) +43 (the weight of the arc CG), the second working value at G should be their 31 (the Final value at B) +30 (the weight of the arc BG). Repeat the process for H (which will have working values from F, E and G with the order of these nodes determined by the candidate's order of labelling at F, E and G)
a4A1ft: Follow through their final value at H only - if answer is 71 but this is not the Final Value at H then A0
a5A1: CAO (ADCBGH)
b1M1: Three distinct pairings of the nodes A, D, E and H
b1A1: Any one row correct including pairing and total
b2A1: Any two rows correct including pairings and totals
b3A1: All three rows correct including pairings and totals
b2dM1: $(383+x)+$ (their least pairing total) with any inequality sign or equal to 440 - dependent on first M mark in (b). Give bod if not all totals are shown (so if they only give two totals then they should be using the least of these two) but they must have shown all three distinct pairings of the four odd nodes
b4A1: cao ($24,, x<30$) - condone $24,, x$, 29
c1B1: cao (check: starting and finishing at $\mathrm{A}, 19$ nodes, AD and EH repeated in route, with $\mathrm{A}(3), \mathrm{B}(2)$, $\mathrm{C}(3), \mathrm{D}(2), \mathrm{E}(2), \mathrm{F}(2), \mathrm{G}(2), \mathrm{H}(2), \mathrm{J}(1))$ - can be given in terms of arcs
d1M1: $(383+x)+25+$ their 52 (where 'their 52 ' must be the length of their shortest path from A to E in either (a) or (b) or they state/imply the shortest path from A to E is 52) - a correct value of 28 with no working can imply this mark only
d1A1: cao (28) from correct working and correct reasoning that A and E are the only odd nodes or that we only need to pair A and E (as a minimum accept mention of A and E only but ignore any mention of the new direct road from D to H)

7.(a)(i)	Let the point of intersection of $-x+5 y=10$ and the unknown line be $A\left(a_{1}, a_{2}\right)$ Let the point of intersection of $4 x+8 y=65$ and the unknown line be $B\left(b_{1}, b_{2}\right)$	
	$\begin{array}{rlrlr} a_{1}+3 a_{2} & =10 & \text { or } & b_{1}+3 b_{2} & =24 \\ -a_{1}+5 a_{2} & =10 & & 4 b_{1}+8 b_{2} & =65 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		A1
	$\begin{array}{rlrl} a_{1}+3 a_{2} & =10 \\ -a_{1}+5 a_{2} & =10 & & \text { and } \end{array} \begin{aligned} b_{1}+3 b_{2} & =24 \\ 4 b_{1}+8 b_{2} & =65 \end{aligned}$	depM1
		A1
(ii)		ddM1
	$3 x+y \ldots 10$	A1
	$-x+5 y \ldots 10,4 x+8 y,{ }^{\text {, }} 65$	B1 (8)
(b)	$k=\frac{15 / 4}{35 / 4}=\frac{3}{7}$	M1 A1 (2)
		10 marks

Notes for Question 7

ai1M1: Form simultaneous equations to find one of the points of intersection of the unknown line with one of the given lines - allow sign slips only
ai1A1: One correct pair of simultaneous equations (allow any choice of letters for their coordinates)
ai2A1: One correct point (need not be stated as coordinates so $x=\ldots, y=\ldots$ is fine)
ai2dM1: Forming both pairs of simultaneous equations (dependent on previous M mark) - allow sign slips only
ai3A1: Both correct points (need not be stated explicitly as coordinates)
aii3ddM1: Find the correct equation of the third line for their A and B (dependent on both previous M marks). Allow unsimplified but must be the correct equation for the line passing through their two points. Condone any inequality sign instead of equals
aii4A1: cao (for the third line) - must be three terms but accept any equivalent form e.g. $6 x+2 y-20 \ldots 0$ (aii1B1: cao (for the other two given lines) - must be three terms only but accept any equivalent forms
 inequalities or k for this mark e.g. seeing $\frac{15 / 4}{35 / 4}$ or $\frac{15}{35}$ or $\frac{35}{15}$ etc. scores M1
b1A1: cao - need not be simplified e.g. $k=\frac{15}{35}$ scores both marks. Allow $y \ldots \frac{3}{7} x$, or just $\frac{3}{7}$ but not k, $\frac{3}{7}$ only. If more than one value of k implied then A0

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

